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Abstract. Knowledge transfer from multiple source domains to a target domain
is crucial in transfer learning. Most existing methods are focused on learning
weights for different domains based on the similarities between each source do-
main and the target domain or learning more precise classifiers from the source
domain data jointly by maximizing their consensus of predictions on the target
domain data. However, these methods only consider measuring similarities or
building classifiers on the original data space, and fail to discover a more power-
ful feature representation of the data when transferring knowledge from multiple
source domains to the target domain. In this paper, we propose a new framework
for transfer learning with multiple source domains. Specifically, in the proposed
framework, we adopt autoencoders to construct a feature mapping from an orig-
inal instance to a hidden representation, and train multiple classifiers from the
source domain data jointly by performing an entropy-based consensus regular-
izer on the predictions on the target domain. Based on the framework, a particular
solution is proposed to learn the hidden representation and classifiers simultane-
ously. Experimental results on image and text real-world datasets demonstrate the
effectiveness of our proposed method compared with state-of-the-art methods.

Keywords: Transfer Learning, Multiple Sources, Consensus Regularization,
Feature Representation.

1 Introduction

Transfer learning or domain adaptation aims to extract common knowledge across do-
mains such that a model trained on one domain can be adapted effectively to other
domains [16]. In the past decade, a number of transfer learning methods have been pro-
posed, most of which are focused on the 1vs1 transfer learning setting, where only one
source domain and one target domain are assumed to be available when knowledge is
transferred. However, in many real-world scenarios, given a target domain, there may
be more than one source domain available for building classifiers. In this case, how to
fully utilize multiple sources to ensure effective knowledge transfer is crucial.
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So far, there are several works proposed for transfer learning with multiple source do-
mains [8,27,7,4,9]. Most of them are focused on learning weights for different domains
based on the similarities between each source domain and the target domain or learning
more precise classifiers from the source domain data jointly by maximizing their con-
sensus of predictions on the target domain data. For instance, Gao et al. [8] proposed
a lazy ensemble method for multi-source transfer learning. Specifically, a number of
supervised classifiers are trained from the source domains, then given an instance in
the target domain, its local structure constructed in the source domains is used to esti-
mate the weights for different source-domain classifiers to make predictions. Zhuang et
al. [27] proposed a consensus regularization framework for multi-source transfer learn-
ing, where classifiers trained on multiple source domains are optimized jointly not only
to achieve high prediction results on the corresponding domains, but also to make con-
sistent predictions on target domain data. Similarly, Chattopadhyay et al. [4] introduced
a transfer learning framework based on the multi-source domain adaptation method-
ology for detecting different stages of fatigue using surface electromyography signals.
The works [7,4,9] need a few labeled data in the target domain, while in our work there
are only labeled data in the source domains.

A common characteristic of most transfer learning methods with multiple domains
is that knowledge transfer is performed on the original data space. However, in many
applications, the supports of features of different domains may not be the same. In
other words, there may exist domain-specific features in different domains, e.g., dif-
ferent product domains have their specific opinion words [1,14]. In this case, adapting
models on the original data space may not be able to transfer knowledge effectively.
Moreover, in many other applications, the data observed may be very complex, e.g.,
sensor signals. In this case, measuring similarity or dissimilarity between domains on
the original data space may not be precise, which may limit the transferability across
domains [13,15]. To address these issues, another branch of methods, which is referred
to as the feature-based transfer learning approach, has been proposed in the 1vs1 trans-
fer learning setting. The motivation of this approach is to learn a feature mapping or
transformation to map the original data to a new feature space where the difference or
distance between different domains can be reduced implicitly or explicitly.

Motivated by the idea of the feature-based methods in the 1vs1 transfer learning set-
ting, in this paper, we propose an embedding-based framework for multi-source transfer
learning. Specifically, in the proposed framework, we first adopt autoencoders [10] to
construct a feature mapping to map an original instance to a hidden representation. Note
that this mapping is shared by all the source and target domain data. We then train mul-
tiple classifiers on different source domain labeled data with the hidden representation
jointly by introducing an entropy-based consensus regularizer on the predictions on the
target domain data with the hidden representation. Based on the framework, a particular
solution is proposed to learn the hidden representation and consensus regularized clas-
sifiers simultaneously. Different from the existing work proposed by Zhuang et al. [27],
where a consensus regularizer is performing on the original data space, our model in-
stead of a hidden feature space. We believe the great success of representation learning
of autoencoders can lead to better transferability of our framework. As will be shown in
the Experimental section, extensive experiments on image and text datasets verify our
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hypotheses and demonstrate the superiority of our proposed framework over a variety
of state-of-the-art methods.

2 Notations and Preliminaries

In this section, we first introduce some frequently used notations as presented in Table 1,
and some preliminaries which will be used in our proposed framwork.

Table 1. The Notation and Denotation

D(i) A data domain i

r The number of source domains
m The number of original features of a data domain
ni The number of instances of a data domain i

k The number of hidden features
x An original instance
y A class label
x̂ The reconstruction of x
z An embedded instance

W, b A weight matrix and bias vector of encoding
W′, b′ A weight matrix and bias vector of decoding
θi A vector of parameters of a classifier i
� The transposition of a matrix
◦ The dot product of vectors or matrixes

2.1 Logistic Regression

In our proposed framework, we adopt logistic regression [6] as the base classifier.
Note that the proposed framework is general, thus other types of classifiers can also
be plugged into our framework. The goal of logistic regression is to estimate a condi-
tional probability P (y|x) in terms of a vector of parameters θ ∈ R

m×1 by solving the
following maximization problem,

min
θ

n∑

i=1

log σ(yiθ
�xi)− λθ�θ, (1)

over a set of labeled data {xi, yi}ni=1, where xi ∈ R
m×1 is an input instance, yi is its

correspondingly discrete output, e.g., for binary classification yi ∈ {−1, 1}, and σ(u)
is a sigmoid function defined as follows,

σ(u) =
1

1 + e−u
. (2)

The second term in (1) is a regularization term to avoid overfitting, where the trade-off
parameterλ is a small positive constant. After θ is estimated, the conditional probability
of y given x can be computed by

p(y|x; θ) = σ(yθ�x), (3)

which is used to classify target domain data, i.e., the predicted label ofx ismaxy p(y|x; θ).
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2.2 Autoencoders

An autoencoder first maps an input instance x to a hidden representation z through an
encoding mapping:

z = h(Wx+ b),

where h is a nonlinear activation function, W ∈ R
k×m is a weight matrix, and b ∈

R
k×1 is a bias vector. The resulting latent representation z is then mapped back to a

reconstruction x̂ through a decoding mapping:

x̂ = g(W′z + b′),

where g is a nonlinear activation function, W′ ∈ R
m×k is a weight matrix, and b′ ∈

R
m×1 is a bias vector. Given a set of inputs {xi}ni=1, the parameters of an autoencoder

are optimized by minimizing the reconstruction error as follows,

min
W,b,W′,b′

=

n∑

i=1

‖xi − x̂i‖2. (4)

Note that, in this paper we adopt the sigmoid function σ defined in (2), which is widely
used in constructing autoencoders, as the nonlinear activation functions g and h for
encoding and decoding respectively.

2.3 Consensus Measure

Given r classifiers in terms of their parameter vectors (θ1, θ2, · · · , θr) and an instance
x, for a specific class c, we denote (p1(c), p2(c), · · · , pr(c)) a vector of the predicted
probabilities P (y = c|x) of the r classifiers accordingly. Then the consensus measure
of the predictions of the r classifiers on x is given by

ψ(x; {θi}ri=1) = −
∑

c∈C
p̄(c) log

1

p̄(c)
, (5)

where p̄(c) = 1
r

∑r
i=1 pi(c), and C is the total set of classes. As shown in [27], max-

imizing (5) is equivalent to enforcing the r classifiers to make consistent predictions
on x as well as minimizing the entropy of the predictions of each classifier on x. For
binary classification, (5) can be rewritten as

ψ(x; {θi}ri=1) = (p̄− (1− p̄))2 = (2p̄− 1)2. (6)

Note that we say (5) and (6) are equivalent for binary classification in the sense that
they have the same effect that: when maximizing them, the predictions on any instance
from all the classifiers (from the different domains) are similar. Thus, their effects on
making the prediction consensus are similar, though their value scales are not the same.
In this paper, we focus on binary classification, thus adopt (6) as the consensus measure
in the following section.
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3 Consensus Regularized Autoencoders

3.1 Problem Formalization

Given r source domainsD(1)
S , · · · ,D(r)

S , where for each source domain j ∈ {1, · · · , r},
there are nj labeled data, i.e., D(j)

S =
{
x
(j)
Si
, y

(j)
Si

}nj

i=1
, where y(j)Si

∈ {−1, 1}, and a

target domain DT without any labeled data, i.e, DT = {xTi , yTi}ni=1, the goal is to
train a classifier f to make precise predictions on DT or previously unseen instances in
the target domain. Note that, in our transfer scenario there is not any labeled data in the
target domain.

Our proposed optimization problem for multi-source transfer learning is formulated
as follows,

min
Θ,Θ′,{θj}

J = ε(xS , x̂S ,xT , x̂T ) + γΩ(Θ,Θ′)

+α	(zS , yS ; {θj})− βψ(zT ; {θj}), (7)

where the first term in the objective is the reconstruction error of the source and target
domain data, which can be written as follows,

ε(xS , x̂S ,xT , x̂T ) =
r∑

j=1

nj∑

i=1

‖xSi − x̂Si‖2 +
n∑

i=1

‖xTi − x̂Ti‖2,

and

z
(j)
Si

= σ(Wx
(j)
Si

+ b), zTi = σ(WxTi + b),

x̂
(j)
Si

= σ(W′z(j)
Si

+ b′), x̂Ti = σ(W′zTi + b′).

The second term in the objective is a regularization term on the parameters Θ =
{W, b} and Θ′ = {W′, b′}, which can be written as

Ω(Θ,Θ′) = (‖W‖2 + ‖b‖2 + ‖W′‖2 + ‖b′‖2).
The third term in (7) is the total loss of each source classifiers over the corresponding
source label data with the hidden representation, which can be written as

	(zS , yS ; {θj}) =
r∑

j=1

(
−

nj∑

i=1

log σ(y
(j)
Si

θ�
j z

(j)
Si

) + λθ�
j θj

)
,

where θj ∈ R
k×1. The last term in (7) is the consensus regularization terms of the

predictions of the source classifiers on the target domain data, which can be written as

ψ(zT ; {θj}) =
n∑

i=1

∥∥∥∥∥2
∑r

j=1 σ(θ
�
j zTi)

r
− 1

∥∥∥∥∥

2

.

The trade-off parameters α, β, γ and λ are small positive contents to balance the effect
of different terms to the overall objective (7).
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3.2 A Particular Solution

The optimization problem (7) is an unconstrained optimization with five types of vari-
ables W, b, W′, b′ and {θj}’s to be optimized, and does not have closed form solu-
tions. To derive the solutions of the five types of variables, we propose to use gradient
descent methods. To simplify the math expressions, we first introduce the following
intermediate variables.

A
(j)
Si

=
(
x̂
(j)
Si
− x

(j)
Si

)
◦ x̂(j)

Si
◦
(
1− x̂

(j)
Si

)
,

ATi = (x̂Ti − xTi) ◦ x̂Ti ◦ (1− x̂Ti),

B
(j)
Si

= z
(j)
Si
◦
(
1− z

(j)
Si

)
,

BTi = zTi ◦ (1− zTi),

C
(j)
Ti

= σ(θ�
j zTi)

(
1− σ(θ�

j zTi)
)
.

Then, it can be shown that the partial derivatives of the objective J in (7) with respect
to W, b, W′, b′ and {θj}’s can be computed as follows respectively,

∂J
∂W

= 2W′�
⎛

⎝
r∑

j=1

nj∑

i=1

A
(j)
Si
◦B(j)

Si
x
(j)
Si

�
+

n∑

i=1

ATi ◦BTix
�
Ti

⎞

⎠

− α

r∑

j=1

nj∑

i=1

(
1− σ(y(j)Si

θ�
j z

(j)
Si

)
)
y
(j)
Si

θj ◦B(j)
Si

x
(j)
Si

�

− 4β

r2

n∑

i=1

⎛

⎝

⎛

⎝2
r∑

j=1

σ(θ�
j zTi)− r

⎞

⎠
r∑

j=1

(C
(j)
Ti

θj ◦B(j)
Si

x�
Ti
)

⎞

⎠

+ 2γW, (8)

∂J
∂b

=2W′�
⎛

⎝
r∑

j=1

nj∑

i=1

A
(j)
Si
◦B(j)

Si
+

n∑

i=1

ATi ◦BTi

⎞

⎠

−α
r∑

j=1

nj∑

i=1

(
1− σ(y(j)Si

θ�
j z

(j)
Si

)
)
y
(j)
Si

θj ◦B(j)
Si

−4β
r2

n∑

i=1

⎛

⎝

⎛

⎝2
r∑

j=1

σ(θ�
j zTi)− r

⎞

⎠
r∑

j=1

(C
(j)
Ti

θj ◦B(j)
Si

)

⎞

⎠

+2γb, (9)

∂J
∂W′ =

r∑

j=1

nj∑

i=1

2A
(j)
Si

z
(j)
Si

�
+

n∑

i=1

2ATiz
�
Ti

+ 2γW′, (10)
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∂J
∂b′

=

r∑

j=1

nj∑

i=1

2A
(j)
Si

+

n∑

i=1

2ATi + 2γb′, (11)

∂J
∂θj

= α

(
−

nj∑

i=1

(
1− σ(y(j)Si

θ�
j z

(j)
Si

)
)
y
(j)
Si

z
(j)
Si

�
+ 2λθ�

j

)

−4β
r2

n∑

i=1

r∑

j=1

(
2σ(θ�

j zTi)− r
)
C

(j)
Ti

z�
Ti
. (12)

Based on the above partial derivatives, with an initialization of W, b, W′, b′ and
{θj}’s, we can update them alternatively and iteratively by applying the following rules
till the solutions are converged,

W←W − η ∂J
∂W

, b← b− η ∂J
∂b

,

W′ ←W′ − η ∂J
∂W′ , b′ ← b′ − η ∂J

∂b′
,

θj ← θj − η ∂J
∂θj

,

(13)

where η is a learning rate. That is, in each iteration, we alteratively fix four of the five
types of the variables and optimize the rest one.

3.3 Target Classifier Construction

After the solutions of W, b, W′, b′ and {θj}’s are obtained, one can construct a clas-
sifier fT in terms of θT for the target domain in two ways. One way is to construct the
classifier combining all source classifiers {θj}’s based on a voting scheme. That is, for
any instance xT from the target domain, which can be either from the observed unla-
beled sampleDT or unseen data sample, the classifier fT make a prediction on it based
on

fT (xT ) =
1

r

r∑

j=1

σ
(
θ�
j (σ(WxT + b))

)
.

Alternatively, another way to construct a target classifier is to first map instances from
all the source domains to their corresponding hidden representations by z

(j)
Si

=

σ
(
Wx

(j)
Si

+ b
)

, and then apply standard classification algorithms, e.g., logistic regres-

sion or Support Vector Machine (SVM) [2], on the labeled data, {z(j)
Si
, y

(j)
Si
}j=1,··· ,r
i=1,··· ,nj

,
to train a unified classifier fT in terms of a vector of parameter θT . For any instance
xT from the target domain, one can first map it to an hidden representation by zT =
σ(WxT +b), and then use θT to make an prediction. In the sequel, we denote Consen-
sus Regularized Autoencoders (CRA) for our proposed framework and the particular
solution. The overall algorithm of CRA is summarized in Algorithm 1.
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Algorithm 1. Consensus Regularized Autoencoders (CRA)

Input: Given r source domains D(1)
S , · · · ,D(r)

S , where D(j)
S = {x(j)

Si
, y

(j)
Si

}nj

i=1, a target domain
DT = {xTi}ni=1, trade-off parameters α, β, γ, λ, and the number of hidden features k.
Output: A classifier on the target domain.

1. Initialize W, b, W′, and b′ by performing an autoencoder algorithm on instances of all the
domains, and train {θj}’s on the corresponding domain data independently.

2. Fix {θj}’s, update W, b, W′, and b′ alteratively based on the update rules in (13) and the
corresponding derivatives in (8), (9), (10) and (11).

3. Fix W, b, W′, and b′, update {θj}’s based on the update rules in (13) and the corresponding
derivative in (12).

4. If the solutions are converged, construct a target classifier as described in Section 3.3, other-
wise, go to Step 2.

Table 2. Description of the image dataset

flower traffic
sunflower rose lotus tulip aviation bus boat dogsled

No. of instance 85 100 66 100 100 100 100 100

4 Experiments

In this section, we conduct extensive experiments on two real-world datasets to sys-
temically evaluate the effectiveness of our proposed method for multi-source transfer
learning.

4.1 Datasets

Image Dataset. We conduct experiments on the image dataset of multi-source transfer
learning problems used in [27]. The dataset contains two main categories, flower and
traffic, selected from the COREL collection1. Each main category further contains four
subcategories. The flower category can be further classified into sunflower, rose, lotus
and tulip, while the traffic category can be further classified into aviation, bus, boat
and dogsled. Figure 1 shows one example of each subcategory respectively. Following
the same preprocessing proposed in [27], we randomly select one subcategory from
flower and one subcategory from traffic to construct a domain, thus can construct 24
(4!) different groups of domains, where each group contains 4 different domains and
each subcategory appears once and only once in each group. In each group, we then
randomly select one domain as the target domain, and the rest 3 domains as the source
domains. Finally, we can construct 96 (4 × 4!) multi-source (3 source domains) image
classification problems. Each image is represented by 87 features, which include 36
features are based on color histogram [25] and 51 features are based on SILBP texture
histogram [19]. The description of the image dataset is summarized in Table 2.

1 http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features

http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
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Fig. 1. Examples of the eight subcategories of the dataset

Sentiment Dataset. We use the Multi-domain sentiment benchmark dataset generated
by [1] for experiments. The dataset contains reviews of 4 types of products, books, dvd,
electronics, and kitchen, crawled from Amazon.com. Each product review is annotated
as positive or negative based on its overall sentiment polarity. Each type of products
is considered as a domain, and each domain contains 2,000 reviews, of which 1,000
are positive and the other 1,000 are negative. Each review is represented as a vector of
3126 word features. Following similar preprocessing used in [1], we randomly select
one of the 4 domains as the target domain, and the rest 3 domains as the source domains.
Therefore, we can conduct four multi-source sentiment classification problems.

4.2 Baseline Methods and Implementation Details

Baseline Methods. We compare our proposed method CRA with various baseline
methods, including the standard logistic regression (LR) and SVM without transfer
learning, an embedding method based on autoencoders (EAER) [23], a dimensionality
reduction method for 1vs1 transfer learning problems, Transfer Component Analysis
(TCA) [15], the Centralized Consensus Regularization (CCR3) [27] for multi-source
transfer learning problems on the original data space, and a recently proposed 1vs1
transfer learning method based on autoencoders, marginalized Stacked Denoising Au-
toencoders (mSDA) [5].

Note that the methods EAER and TCA only map original data to a latent space,
where a classifier needs to be further specified for final classification problems. Here,
we consider LR or SVM as the base classifier for EAER and TCA. Moreover, except
for CCR3, all the other baselines are not proposed for multi-source transfer learning
problems, to conduct experiments with multiple source domains, we can either apply
them on each pair of a source domain and the target domain or apply them on the pair
of a unified source domain which simply combines all source domains and the target
domain to learn a target classifier. For each of these baselines, i.e., LR, SVM, EAER,
TCA, and mSDA, we report the mean, the maximum as well as the minimum accuracies
of their corresponding target classifiers based on pairwise domains. For our proposed
CRA, as we discussed, there are two ways to construct a target classifier. One is a
voting-based combination of the multiple learned source classifiers, the other is to learn
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Table 3. Average results (in %) on the 96 multi-source image classification problems

LR SVM
LR SVM

mSDA CCR3 CRAv
LR SVM

EAER TCA EAER TCA CRAu CRAu

Max 83.9 81.7 83.2 84.2 85.6 85.2 83.1 87.5
89.2 89.4 88.9Min 65.0 56.0 62.3 66.8 71.3 69.8 64.6 83.5

Mean 76.1 69.6 74.9 77.0 79.4 79.1 73.5 85.9

a unified classifier from hidden representations of all source domains. We denote CRAv

and CRAu the target classifiers built in these two ways respectively.

Implementation Details. For the trade-off parameters in CRA, the settings are listed
as follows, α = 1, β = 0.5, k = 10, γ = 0.0001, λ = 1 for the image dataset, and
α = 100, β = 20, k = 80, γ = 0.0001, λ = 1 for sentiment dataset. In experiments,
we also study the parameter sensitivity of the parameters. For the parameters in TCA,
EAER and mSDA, we carefully tune the number of dimensions k, and report the best
results (e.g., in TCA, k varies from 10 to 80 with interval 10 for image data). We set the
parameters of CCR3 as the those published in [27], in which the parameter θ controlling
the importance of consensus is sampled from [0.05, 0.25] with interval 0.05. Thus the
three values of minimum, mean and maximum for CCR3 are also reported.

4.3 Experimental Results

Results on Image Data. We show the detailed mean accuracies of 96 image classifi-
cation problems in Figure 2, and their average results in Table 3. From these results,
we have some attractive observations: 1) CRA is significantly better than the tradi-
tional machine learning algorithms LR and SVM, which validate the effectiveness of the
proposed transfer learning framework. 2) CRA outperforms TCA, EAER and mSDA,
which shows that CRA can benefit from discovering a more powerful feature repre-
sentation and incorporating consensus regularization from multiple source domains.
3) CRA performs better than CCR3, which indicates the superiority of representation
learning of autoencoders. Furthermore, the t-test with 95% confidence shows that CRA
is significantly better than all the compared baselines.

Results on Sentiment Data. To further verify the effectiveness of the proposed frame-
work CRA, we also make comparisons of all algorithms on sentiment classification
problems. The detailed results are recorded in Table 4. Except mSDA is slightly better
than CRA according to the maximum accuracies, CRA outperforms all the baselines.
These results again validate the effectiveness of CRA, which can take full advantage
of autoencoders and consensus regularization from multiple source domains simultane-
ously in a unified optimization framework.

4.4 Parameter Sensitivity

Here, we also investigate the parameter influence of three important trade-off param-
eters on image data, i.e., the relative importance of incorporating labeled information
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(a) The mean accuracies of 96 multi-source image classification prob-
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(b) The mean accuracies of 96 multi-source image classification prob-
lems using SVM as the base classifier

Fig. 2. The mean accuracies of 96 multi-source image classification problems

from source domains, the effect of considering consensus regularization and the number
of hidden nodes for autoencoder. When we consider one parameter, the rest parameters
are fixed. α and β are sampled from the value set {0.01, 0.1, 0.5, 1, 5, 10, 50, 100}, and
k is sampled from the value set {5, 10, 20, 30, 40, 50, 60, 70, 80}. Six problems are ran-
domly selected from 96 ones, and all the results of CRAv are shown in Figure 3. We
find that CRA is not sensitive to the number of hidden nodes k from Figure 3(c), so we
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Table 4. Detailed and average results (in %) on the 4 multi-source sentiment classification
problems

Tasks LR SVM
LR SVM

mSDA CCR3 CRAv
LR SVM

EAER TCA EAER TCA CRAu CRAu

tar.book
Max 79.3 78.4 67.8 68.5 73.0 66.2 82.3 78.6

79.2 79.2 79.1Min 71.0 71.5 57.0 58.9 69.3 59.3 77.6 78.2
Mean 75.7 74.9 63.0 64.2 70.9 62.8 79.9 78.4

tar.kitchen
Max 85.6 85.4 78.9 75.2 77.5 73.1 84.7 86.1

85.9 86.3 85.8Min 76.4 74.9 71.0 64.2 75.9 64.7 81.4 85.6
Mean 81.0 80.5 76.6 69.4 76.7 68.7 83.5 85.9

tar.elec.
Max 83.9 83.1 74.2 72.9 72.8 70.5 85.2 79.3

84.1 84.7 82.4Min 73.5 73.0 68.5 60.7 69.4 59.4 74.4 75.4
Mean 78.7 78.9 70.8 67.1 71.2 65.2 81.0 75.6

tar.dvd
Max 79.7 79.5 69.5 68.5 70.8 67.4 82.3 80.2

80.6 81.1 80.8Min 73.6 72.2 56.5 61.4 67.7 61.3 78.2 79.7
Mean 77.0 75.9 65.1 65.2 69.0 64.3 80.3 80.1

Average
Max 82.1 81.6 72.6 71.3 73.5 69.3 83.7 81.1

82.5 82.8 82.0Min 73.6 72.9 63.2 61.3 70.6 61.2 77.9 79.7
Mean 78.1 77.5 68.9 66.5 72.0 65.3 81.2 80.5

set k = 10 in the experiments for high efficiency. In Figure 3(a), CRA gets very low
performance when the value of α is small, which indicates the importance of labeled
information from source domains. Also in Figure 3(b), it is observed that the setting of
large value of β will lead to over-fitting and degrade the performance of CRA. Accord-
ing to these insights, we set α = 1, β = 0.5 and k = 10 in this paper to achieve good
and stable results.

5 Related Work

In this section, we survey some previous works which are closely related to our work,
including transfer learning and autoencoder.

5.1 Embedding with Autoencoder

Autoencoders are primarily seen as a dimensionality reduction technique and thus use
a bottleneck, namely the lower dimensional hidden layer of autoencoder, to learn a
compressed representation which is represented by the hidden layer [3,10]. Currently
variants of autoencoders have been investigated. Sparse autoencoders [17] use the idea
of introducing a form of sparsity regularization to restrict the capacity of hidden units.
Denoising autoencoders [21,22] learn to reconstruct the clean input from a artificially
corrupted input and capture the structure of the input distribution. Sparse coding [12]
can be viewed as a kind of autoencoder that uses a linear decoder tends to favor learning
over-complete representations. These are often called regularized autoencoders, where
some regularization terms are proposed to improve the data reconstruction performance.
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(a) The Parameter Influence of α
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(b) The Parameter Influence of β
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Fig. 3. The Study of Parameter Influence on CRA

Contractive autoencoders [18], which shares a similar motivation with Denoising au-
toencoders, learn robust representations by adding an analytic contractive penalty term
to the basic autoencoder. Marginalized Stacked Denoising Autoencoders (mSDA) [5]
can be seen as the first try to use autoencoding technique for domain adaptation. How-
ever they have not considered consensus regularization from multiple sources.

5.2 Transfer Learning

Recent years have witnessed numerous research in transfer learning [16]. Here we only
list some closely related works, i.e., transfer embedding and subspace learning (or learn-
ing on topic level). Pan et al. [13] proposed a dimensionality reduction approach to find
out such latent feature space that supervised learning algorithms can be applied to train
classification models and obtain satisfying results. After that, they also proposed a trans-
fer component analysis (TCA) algorithm to learn some transfer components across do-
mains [15]. Si et al. [20] developed a transfer subspace learning framework, which can
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be applicable to various dimensionality reduction algorithms and minimize the Breg-
man divergence between the distribution of training data and testing data in the selected
subspace. Zhuang et al. [26] exploited the stable associations between word topics and
document classes as the bridge for knowledge transfer. Zhang et al. [24] proposed to
match data distributions in the Hilbert space, which can be formulated as aligning ker-
nel matrices across domains when given a pre-defined empirical kernel map. However,
these works are all in the 1vs1 transfer learning setting. Compared to the previous work
learning from multiple sources [27] on the original data space, we focus on the rep-
resentation learning of autoencoders for transfer learning. For cross-domain activity
recognition, Hu et al. [11] developed a bridge between the activities in two domains
by learning a similarity function via Web search, under the condition that the sensor
readings are from the same feature space. However, they assumed some labeled target
domain data are available in their model.

To sum up, we propose a unsupervised transfer framework via consensus regular-
ized autoencoders, which takes full advantage of autoenders and consensus regular-
ization from multiple sources. And finally, the extensive experiments demonstrate its
effectiveness.

6 Conclusions

In this paper, we study the transfer learning framework from multiple source domains
via consensus regularized autoencoders. In this framework, the well known represen-
tation learning technique autoencoder is incorporated, and the consensus prediction on
target domain data given by classifiers trained from multiple source domains is consid-
ered. Then we formalize the autoencoders and consensus regularization into a unified
optimization framework. Finally, a series of experiments on image and text data are
conducted to validate the effectiveness of our framework.

We assume all the source domains play the same important role in this paper. It would
be interesting to assign different weights to different source domains and investigate
their importance in the future work.
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